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Abstract 

An initial electron density distribution for a crystal 
structure may be directly derived from observed 
diffraction data by maximizing the product of the 
observed and calculated Patterson functions with 
respect to the electron density values within an 
envelope. This maximization problem may be formu- 
lated as an eigenvalue equation, in which potential 
electron density distributions are obtained as eigen- 
densities (eigenvectors) of a symmetric matrix. Ele- 
ments of this matrix depend only on the indices and 
intensities of the observed reflections, and on the 
coordinates of grid points inside the envelope. Eigen- 
densities are calculated for a set of small envelopes 
(enclosing about 20% of the molecular volume) cover- 
ing a unique region of the unit cell whose points are 
unrelated by space-group operations, origin shifts or 
changes in enantiomorph. On the basis of correlation 
coefficients between the observed and calculated 
values for both the Patterson function and structure- 
factor amplitudes, a small set of eigendensities are 
selected for combination into a final electron density 
distribution. This electron density distribution may 
be Fourier transformed to yield calculated structure 
factors. Test calculations on lysozyme indicate that 
phase errors of less than 60 ° may be obtained for 
strong low-resolution reflections by this procedure. 
An extension of this approach to handle crystal struc- 
tures containing non-crystallographic symmetry is 
described. 

Introduction 

A molecular envelope divides the interior of 
macromolecular crystals into two regions of roughly 
equal volumes, consisting of either the molecule or 
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the solvent. Owing to positional disorder of the sol- 
vent molecules, the electron density in the solvent 
region is approximately constant. Enforcement of this 
constraint on the solvent density ('solvent flattening') 
has provided a powerful phase refinement method, 
in both the presence (Rossmann, 1972) and absence 
(Wang, 1985) of non-crystallographic symmetry. In 
principle, knowledge of the molecular envelope also 
provides an approach to direct phase determination, 
but this has not yet been routinely achieved in prac- 
tice. In this note, a constrained symmetric quadratic 
function of the electron densities of grid points within 
a molecular envelope is formulated that depends only 
on the indices and intensities of observed reflections. 
Electron density distributions derived from the 
maximization of this function may be used to directly 
obtain phase information. 

Although crystallographic calculations may be for- 
mally accomplished in either real or reciprocal space, 
a real-space emphasis will be adopted in this work 
since the distinction between molecular and solvent 
regions has a particularly simple real-space interpre- 
tation. Assuming a molecular envelope has been 
defined (the determination of the envelope will be 
discussed more fully below), the problem to be 
addressed is to find density values for grid points 
within the envelope that are consistent with the 
observed Patterson function. This may be accom- 
plished by finding electron density values that maxim- 
ize • : 

~ = E  eo(u,,)ec(uk) (1) 
k 

where • is the product of the multiply corrected 
observed and calculated Patterson functions, Po(Uk) 
and Pc(Uk), respectively. The sum is over points at 

© 1990 International Union of Crystallography 



916 DIRECT PHASE DETERMINATION 

positions u k contained within the Patterson asym- 
metric unit. Pc(Uk) may be calculated from the (as 
yet unknown) electron density values of points within 
the molecular envelope. As seen from the form of 
(1), qb is related to the correlation coefficient between 
the observed and calculated Patterson functions, 
differing only by the presence of terms related to the 
variances of the two Patterson functions in the 
denominator of the correlation coefficient. 

In matrix notation, the dependence of • on the 
electron density of points within the molecular 
envelope may be written in the following fashion: 

• =prATBAp ,  (2) 

where p is the vector of electron density values of 
grid points within the envelope, and the A and B 
matrices transform p values into the sum of the prod- 
uct of the observed and calculated Patterson func- 
tions. The elements of A and B have the form: 

A 2 i _ l , j  = aC( hi ,  Xj) 

A2i.j = bC(hi, xj) 
(3) 

B2i-l.2i-i = B2,,2i = Y~ Po(Uk)aP(hi, Uk) 
k 

B~.j = O, i # j, 
c b c where a , and a p are the real (a) and imaginary 

(b) parts of the structure-factor expression for the 
crystal space group (superscript c) and the Patterson 
space group (superscript p), respectively; hi are the 
Miller indices of the observed reflections; and xj and 
Uk are positions of points within the molecular 
envelope and the Patterson asymmetric unit, respec- 
tively. Significantly, the A and B matrices depend 
only on the indices and intensities of the observed 
reflections [since Po(Uk) is the Fourier transform of 
the observed intensities] and are independent of the 
electron density values in p. 

Maximization of • with respect to p requires 
introduction of a constraining relationship on the 
elements of p: 

prp = 1. (4) 

This condition must be imposed since otherwise the 
maximization problem is not well defined as multipli- 
cation of p by a constant, S, increases q~ by S 2. The 
constraining relation may be incorporated into the 
maximization of • by the use of Lagrange multipliers 
(Hestenes, 1975). The resulting function, fit, to be 
maximized is 

~ = ~--A(pTp--1)  

= pTA TBAp - A (pTp - 1 )  (5) 

where A is the Lagrange multiplier. 
At extrema points (including maxima), the deriva- 

tive of gt with respect to p vanishes. Since A TBA is 
a symmetric matrix, p values defining these points 

satisfy the eigenvalue equation 

ATBAp = hp. (6) 

In general, if there are N grid points in the molecular 
envelope, there will be N different sets of coupled 
eigenvalue, eigenvector solutions to (6). Eigen- 
densities pi associated with the largest values of q~ 
are the eigenvectors corresponding to the largest 
eigenvalues of the symmetric matrix ArBA.  Since q~ 
is not exactly the correlation coefficient between 
observed and calculated Patterson functions, the pi 
that maximize q~ need not correspond exactly to the 
true electron density values, even with the correct 
molecular envelope. One may hope (a word that 
occurs frequently in the molecular-replacement 
literature), however, that the true density may be 
expressed as a sum of only a relatively few eigen- 
densities Pi. This expectation will be explored in 
greater detail below. 

Methods 

The general approach to an envelope-based phase 
determination consists of a sequence of three steps: 

1. definition of the envelope; 
2. calculation of eigendensities; 
3. selection and combination of eigendensities. 

Implementation of these steps will be illustrated by 
a specific application to the lysozyme crystal struc- 
ture. Chicken egg-white lysozyme crystallizes in space 
group P43212, with cell dimensions a = b = 79-1, c = 
37 .9~  (Blake, Koenig, Mair, North, Phillips & 
Sarma, 1965). Diffraction data from lysozyme crystals 
were collected on a multiwire area detector (Cork, 
Hamlin, Vernon & Xuong, 1985), and intensities of 
the unique reflections were scaled and merged with 
the R O C K S  crystallographic package (Reeke, 1984; 
Bethge, 1984). Phases for the observed structure- 
factor amplitudes were calculated from atomic coor- 
dinates (Kundrot & Richards, 1987) in the 2LYM set 
of the Brookhaven Protein Data Bank (Bernstein et 
al. 1977). Calculations in this paper were performed 
to a limiting resolution of 6 A, with an observed data 
set containing 348 reflections (199 acentric, 149 cen- 
tric, 94% of the theoretical number). Electron density 
and Patterson maps calculated from these structure 
factors were sampled at approximately 3 A intervals, 
with 28, 28 and 12 grid points along the crystallo- 
graphic a, b and c axes, respectively. Fast Fourier 
transform methods (Ten Eyck, 1973, 1977) were used 
for all map calculations. 

Step 1: Definition of  envelope 

A molecular envelope is described by specifying 
the shape, size and position. The actual molecular 
envelope for lysozyme in the section z = 0/12 is illus- 
trated in Fig. l(a).  The outline of the envelope in the 
section z = 0 / 1 2  is also illustrated in Fig. l(b) for a 
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particular l~¢sozyme molecule with molecular center 
near (0, 3, 0). As seen from these figures, the precise 
molecular envelope is rather complex, which compli- 
cates efforts to specify exactly the molecular envelope 
for an unsolved structure.* The following approach 
was used to approximate an envelope: 

Shape: Simple shapes such as spheres and cubes 
are often used to model unknown envelopes. Cubic 

* While this manuscript was in review, an experimental determi- 
nation of a molecular envelope from intensity measurements by 
the method of solvent contrast variation was described (Carter, 
Crumley, Coleman, Hage & Bricogne, 1990). 
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Fig. 1. Molecular envelopes in the section z=0 for (a) the 
lysozyme crystal, and (b) one of the crystallographically 
equivalent lysozyme molecules in the crystal, centered near 
(0, 3, 0). The envelopes were generated from the lysozyme co- 
ordinates by assigning a van der Waals radius of 3 .zi to each 
atom. 

envelopes were used in this work since different (trial) 
envelopes could be stacked together like bricks so as 
to fill uniformly a given region of space. 

Size: The molecular envelope of lysozyme encloses 
a volume of approximately 1.7 x 10 4/~3, or about 650 
( -93)  grid points at a sampling interval of 3 ]k. While 
this sets an upper limit on the size of an envelope, 
for computational reasons it is desirable to determine 
the smallest envelope volume that will allow accep- 
table phasing. Average phase differences were deter- 
mined between the exact phases (ffmodel, computed 
from the atomic model) and phases obtained from 
inversion of (Fobs, amodel) electron density maps 
masked with cubes containing 3, 5, 7, 9 and 11 grid 
points on a side. The cubes were centered at (0, 3, 0), 
which is near the molecular center of one of the 
crystallographically equivalent lysozyme molecules. 
Overall absolute phase differences, as well as absolute 
phase differences for classes of reflections defined on 
the basis of resolution and structure-factor amplitude, 
are presented in Table 1. Rather unexpectedly, accep- 
table phase errors (<50 ° ) were obtained for strong 
reflections (defined as Fobs>Fave) using cubic 
envelopes containing only 53 grid points, or about 
20% of the molecular volume. 

Position: For envelopes of sufficiently high sym- 
metry, the search region for the envelope position 
may be restricted to that fraction of the asymmetric 
unit containing a unique set of points unrelated by 
changes in origin or enantiomorph. In space 
group P43212, structures related by origin shifts of 
(0, 0, 0), (½, ½, 0) (0, 0, ½), (½, ½, ½) have identical 
diffraction patterns (Rogers, 1980). The origin shifts 
imply that points with the following coordinates unre- 
lated by crystallographic symmetry in space group 
P43212 give rise to the same set of Patterson vectors: 

(a) x y z 

(b) ½+x ½+y z 
(7) 

(c) - x  - y  z 

(d) ½ - x  ½ - y  z. 

Additional equivalent positions appear in the sections 
z =0,  ~ , . . .  due to the presence of crystallographic 
rotation and screw axes in these planes. As a con- 
sequence, only 1 of the asymmetric unit needs to be 
searched for the envelope center. There is no enan- 
t iomorph ambiguity in this space group, since a 
change in hand requires a change in space group to 
P41212. 

One choice of asymmetric unit in space group 
P43212 is included in the volume 0-< x < 1, 0 <- y -- x, 
0 <-z <-~. With only 12 sections along the entire c axis 
(for calculations at 6 A resolution), and a cubic 
envelope with 5 points along an edge, the search for 
the envelope center in the lysozyme calculation was 
restricted to the one section z = 0/12. Since this region 
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Table 1. Comparison between true structure factors for lysozyme and structure factors calculated to 6 • resolution 
by inversion of the true electron density map, masked with cubes of the indicated size 

The unit cell was sampled at 28, 28 and 12 divisions along the crystallographic a, b and c axes, respectively. All cubes were centered 
at (0, 21/28, 0), near the center of mass of one of the crystallographically equivalent copies of a lysozyme molecule. The correlation 
coefficients are between the true and calculated values for both the Patterson function (omitting the origin and the nearest-neighbor 
points) and the structure-factor amplitudes. The absolute phase differences (in degrees) between the true and calculated phases are 
presented for all reflections, as well as four mutually exclusive categories of reflections ( WL, SL, WH, SH). W and S indicate weak 
and strong reflections, as defined by Fob s < Fay e or Fob s > Fare, respectively. Fay e values are calculated in shells of 0-001 .~-2 in sin 2 0/A 2. 
L and H indicate 'low'- and 'high'-resolution values, defined as 0.002 (~11/~, )<s in  2 0/A2<0.0045 A -2 (~7.5 A) and 0-0045< 
sin 2 0/A 2 < 0.0069 ~-2 (6/~), respectively. 

Cube edge Correlation coefficients Absolute phase differences (°) 
(grid points) Patterson Structure factor Overall WL SL WH SH 

3 0-174 0.129 82 92 66 93 70 
5 0.294 0.288 73 95 48 98 43 
7 0.357 0-476 56 86 36 75 27 
9 0.673 0.741 35 54 9 54 14 

11 0.894 0.917 18 37 7 23 7 

is significantly larger in the x and y directions than 
the trial envelopes, it is necessary to try multiple 
envelope positions to sample the entire search region. 

either positive or negative), both positive and negative 
correlation coefficients between the observed electron 
density and the eigendensities may be observed. 

Step 2: Calculation of eigendensities 

The crystallographic coordinates of the 125 grid 
points in a 5 x 5 x 5 cubic envelope may be determined 
once the center position of the envelope is specified. 
These coordinates, coupled with the indices of the 
observed reflections and the observed Patterson func- 
tion, may be used to calculate elements of the A and 
B matrices (3). The relevant crystal and Patterson 
space groups for lysozyme are P432~2 and P4/mmm, 
respectively. The summation for elements of the B 
matrix is over points in the Patterson asymmetric unit 
of lysozyme (0 --- u -< ½, 0 <- v -< u, 0-< w -< ½). The origin 
of the Patterson function and the nearest-neighbor 
points were excluded from the summation. The 
Patterson function was not modified for this calcula- 
tion, although sharpening could be performed to 
enhance the contribution of higher-resolution reflec- 
tions. All trigonometric expressions were evaluated 
with a lookup algorithm described by Burnett & 
Nordman (1974) and Hoard & Nordman (1979). 

Eigenvalues and vectors of the A rBA matrix were 
evaluated with the EIGRS routine of the IMSL 
library. The resulting eigendensities were character- 
ized by calculating correlation coefficients between 
the observed and calculated (1) electron densities, 
(2) structure-factor amplitudes and (3) Patterson 
functions, as well as the absolute difference between 
phases calculated from the atomic model and from 
the eigendensity values. Of these indicators, only the 
structure-factor amplitude and Patterson-function 
correlation coefficients could be calculated for an 
unknown structure. As examples to be explored more 
fully below, a listing of these indicators for the first 
ten eigendensities calculated for cubic envelopes cen- 
tered at (2/28, 18/28, 0) and (0, 22/28, 0) are pre- 
sented in Table 2. Since the eigendensities are 
specified only to within a constant (which can be 

Step 3: Selection and combination of eigendensities 

Eigendensities were calculated for 5 x 5 x 5 cubic 
envelopes centered in the z = 0 section and spaced at 
two grid intervals in the x and y crystallographic 
directions. The average sum of the Patterson 
function and structure-factor amplitude correlation 
coefficients for the first ten eigendensities of each 
envelope are plotted in Fig. 2(a) as a function of the 
envelope center position. Encouragingly, regions 
exhibiting above average correlation coefficients 
agree well with allowed regions of a packing function 
(Fig. 2b) illustrating permissible positions for the 
center of an 11/~, radius sphere in this space group 
(Hendrickson & Ward, 1976). 

Since the lysozyme structure is known, the agree- 
ment between the true electron density and the 
eigendensities can be directly assessed. While no 
eigendensity exactly reproduces the true density 
within the envelope, typically, several eigendensities 
exhibit significant correlation coefficients (magnitude 
>0.3) with the true density (Table 2). This suggests 
that a better approximation to the true electron 
density could be obtained by combining multiple 
eigendensities from different envelopes into a single 
density distribution. 

Envelopes centered at (2/28, 18/28, 0) and 
(0, 22/28, 0) were selected for further analysis, since: 
(1) the maximum value for the average correlation 
coefficients plotted in Fig. 2(a) occurs at the point 
(2/28, 18/28, 0), and (2) the envelope centered at 
(0, 22/28, 0) is in the middle of the same contiguous 
allowed region of Fig. 2(a) as the first envelope, but 
does not overlap with it. A projection of the region 
occupied by these envelopes in the asymmetric unit 
of lysozyme is illustrated in Fig. 3. These particular 
envelope positions were selected in preference to 
other equivalent points in Fig. 2(a) for consistency 
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Table 2. Characterization of eigendensities calculated for 5 x5 x5 envelopes centered at (2/28, 18/28, 0) 
and (0/28, 22/28, 0) 

Eigendensit ies are o rdered  in decreasing value o f  • calculated f rom equat ion  (1). The  corre la t ion coefficients (designated ED, Patt 
and SF) are be tween the true and calculated values o f  the electron densi ty inside the cube,  the Pat terson funct ion and the s t ructure-factor  
ampli tudes,  respectively. Phase differences are as descr ibed in the legend to Table  1. Perfect ly ant icorre la ted (sign-reversed) electron 
density sets will have an absolute  phase difference o f  180 °. Eigendensit ies flagged with an asterisk (*) were selected for  combina t ion  
into the final calculated s tructure factors on the basis o f  the Patterson funct ion and s t ructure-factor  ampl i tude  correlat ion coefficients. 

Corre la t ion coefficients Absolute  phase  differences (°) 
Patt SF Overall  WL SL WH Eigenvector  ED 

5 x 5 x 5 cube centered at (2/28, 18/28, 0) 

SH 

1 -0"159 0"189 0"219 91 74 106 87 100 
*2 0"493 0"490 0"405 90 92 77 97 86 

3 -0.027 0.207 0.349 89 93 105 88 86 
4 0"003 0"320 0"319 89 86 87 91 91 
5 0-077 0"183 0"169 93 104 85 91 93 
6 -0"135 0'324 0"292 97 85 85 104 102 
7 0"045 0"462 0"351 88 96 94 85 85 

*8 -0"331 0"487 0"406 97 86 103 98 100 
*9 -0.126 0"472 0"376 93 92 111 87 93 
10 0"017 0"160 0"158 95 92 97 93 99 

5 x 5 x 5 cube centered at (0/28, 22/28, 0) 
\ 1 -0.275 0.168 0.211 91 101 112 91 75 

*2 -0.112 0.557 0.391 90 91 106 87 86 
3 -0'259 0.115 0"191 93 99 89 90 93 
4 -0-109 0.218 0.235 92 84 97 91 95 
5 -0.098 0.181 0.279 90 87 91 87 94 

*6 0.247 0.502 0.369 89 95 85 95 80 
*7 0.427 0.426 0.320 88 101 64 94 84 

8 0.130 0.363 0.266 90 87 85 99 85 
9 0.016 0.280 0.290 94 90 96 94 94 

10 -0.132 0.437 0.269 94 84 81 98 101 

with the known lysozyme structure (Fig. l b), which 
facilitates comparison of observed and calculated 
phases. From the sum of the Patterson function and 
structure-factor amplitude correlation coefficients, 
the top three eigendensities (Table 1) from each of 

these two envelopes were selected for combination 
into a single electron density distribution. 

Combination of individual eigendensities was 
achieved by the following method. Let F1 and F2 
be structure factors calculated from multiple 
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Fig. 2. (a )  C o n t o u r  plot  o f  the average value o f  the sum of  the correla t ion coefficients be tween observed and calculated values for  
bo th  the Pat terson funct ion  and the s t ructure-factor  ampl i tudes  for  the top ten eigendensit ies genera ted  f rom envelopes centered  in 
the section z = 0. Envelopes  conta ined  53 grid points,  and were spaced at intervals o f  2 grid units in the x and y coordinates .  Cou tou r  
levels are at +0-5 and ± 1.0o" f rom the mean of  the observed  values for  the correla t ion coefficients. Negat ive contours  are represented  
by dot ted  lines. The  m a x i m um in this section occurs at (2/28,  18/28, 0) and equiva len t  points,  and is indicated by +. (b)  Packing 
funct ion d iagram illustrating the al lowed and exc luded  posit ions for  the center  o f  an 11 A sphere in the sect ion z = 0 o f  the lysozyme 
space group  and  unit  cell. 
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eigendensities associated with envelopes 1 and 2, 
respectively. F1 and F2 are obtained by summing the 
structure factors calculated from the individual eigen- 
densities through the relationships: 

F1 = E f l l , , f l , ,  
i 

(8) 
F2 = E ~2,jf=,j 

J 

where f l , i  and f 2 j  are structure factors calculated 
from the ith and j th  eigendensity of envelopes 1 and 
2, respectively, and the fl's are the corresponding 
weighting factors. Values for the fl's may be deter- 
mined by maximizing the quantity C, which is related 
to the correlation coefficient between F1 and F2 
(Srinivasan & Parthasarathy, 1976). C is defined as 

C=(Re(F~F*)) (9) 

where Re indicates the real component of this com- 
plex function, and the average is taken over all reflec- 
tions. Expansion of C shows that this expression is 
a symmetric quadratic in #l,if12..:, so that the maximi- 
zation may be accomplished by the same method 
described previously to evaluate the eigendensities. 
Specifically, the weighting coefficients may be deter- 
mined by solving for the eigenvectors corresponding 
to the largest eigenvalues of the matrix: 

f , , , f 2 , j  " ( lO)  

Maximization of this correlation coefficient is 
equivalent to finding the linear combinations of the 

0 Y 

solvent 

f 
molecule _ _  

L 

//I 
Fig. 3. Superposition down the z axis (0~ z-<l) of the regions 

contained within the 5 x 5 x 5 grid point envelopes centered at 
(2/28, 18/28, 0) and (0, 22/28, 0) and the crystallographically 
equivalent positions. 

f ' s  that yield the most similar values for the complex 
structure factors F1 and F2. 

Since test calculations suggested that phases were 
most reliably determined for strong reflections (Fobs > 
Fave) at low resolution (Tables 1 and 2), the fl's were 
evaluated using only strong reflections in the resolu- 
tion range 0 .002<sin  2 0/h2<0.0045~ -2. Two sets 
of coefficients were obtained (Table 3), corresponding 
to the top two eigenvalues of (10), which had correla- 
tion coefficients >0.15 between Fa and F2. These 
weights were used to determine a combined set of 
calculated structure factors, Fc, through the 
relationship: 

2 3 

F~= E E flj,,fj,,. (11) 
j = l  i=1  

Three sets of calculated structure factors (SF1, SF2 
and SF12) were generated from the two individual 
sets of weighting coefficients, and a combination of 
the two sets, respectively. For strong low-resolution 
reflections, the absolute phase differences between 
the model and calculated reflections were 75, 61 and 
54 °, respectively. These phase differences are sig- 
nificantly smaller than random (90°), and suggest that 
useful phase information may be generated by this 
approach. 

Electron density maps of lysozyme calculated with 
envelope-derived phases are illustrated in Fig. 4. This 
figure shows the superposition of sections covering 
the asymmetric unit of lysozyme for maps calculated 
with Fourier coefficients (Fobs, amode~; Fig. 4a), and 
(Fobs, acalc ; Fig. 4b) where aca~c is from the combined 
SF12 Fourier set. Reflections with (Fobs > Fave) in the 
resolution range 0.002 < sin20/A 2 < 0.0045 ~-2  were 
used in the Fourier calculation. The correlation 
coeffÉcient between the (Fobs, t~model) and the 
(Fobs, acal¢) maps is 0-60, demonstrating a significant 
correlation between the calculated and true phases. 

Discussion 

Electron density distributions may be directly derived 
from observed diffraction data by maximizing the 
product of the observed and calculated Patterson 
functions with respect to the electron density values 
within an envelope. The maximization problem may 
be formulated as an eigenvalue equation (6), in which 
the potential electron density distributions are 
obtained as eigendensities (eigenvectors) of a 
symmetric matrix. The approach to direct phase deter- 
mination adopted in this work is to calculate eigen- 
densities for multiple small envelopes that cover a 
minimal search region of the unit cell. Promising 
eigendensities are selected from several non-overlap- 
ping envelopes, on the basis of agreement with the 
observed Patterson function and structure-factor 
amplitudes, and combined into the final electron 
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Table 3. Values of the weighting coefficients/3 calculated from the eigenvectors of equation (10)for combining 
eigendensities into calculated structure-factor sets 

Eigendensities a, b, c, d, e a n d f  correspond to eigendensities 2, 8 and 9 of the envelope centered at (2/28, 18/28, 0) and eigendensities 
2, 6 and 7 of the envelope centered at (0/28, 22/28, 0) respectively (Table 1). Coefficients for the structure-factor set SF12 were obtained 
by summing the coefficients for sets SF1 and SF2 and normalizing. 

Weighting coefficients (/3) for eigendensities 
Structure-factor set a b c d e f 

SF1 - 0 - 0 4  - 0 - 4 6  -0"53  - 0 . 6 2  0-19 0.27 
SF2 0.66 0.16 - 0 . 1 9  0.33 0.42 0.46 
SF12 0.44 -0 .21  -0 .51  -0 .21  0-43 0.52 

density distribution. Phases are then calculated by 
Fourier transformation of this distribution. Test 
calculations with lysozyme indicate that phase errors 
of less than 60 ° may be obtained for strong low- 
resolution reflections. These phases could be used to 
image the structure directly (Fig. 4), to locate heavy 
atoms by difference-Fourier analyses, or perhaps to 
serve as starting values for various phase refinement 
methods. 

Clearly, the critical step in this process is the selec- 
tion of eigendensities to be combined into the final 
electron density distribution. Since no eigendensities 
were found in the lysozyme calculation that exactly 
reproduced the true electron density within an 
envelope, it is not necessarily evident which eigen- 
densities should be selected for further combination. 
The magnitudes of the correlation coefficient between 
observed and calculated values for both the Patterson 
function and structure-factor amplitudes provide an 
objective criterion for the initial selection of eigen- 
densities. These choices may be further refined by 
examination of the magnitudes of the weighting 
coefficients,/3, which provide an estimate of the con- 

tribution of the associated eigendensity to the 
calculated structure factors (8). An iterative process 
for eigendensity selection can be envisioned, in which 
eigendensities with small /3's are replaced by new 
eigendensities, until a final set is selected. 

Although not relevant to the lysozyme calculation, 
combination of eigendensities from structures in 
polar space groups may be more complicated than 
treated here. In this case, it is quite possible that 
individual eigendensities may correspond to different 
choices of origins along the polar axis. The initial 
combination of eigendensities might be treated by 
using only seminvariant reflections (which are 
insensitive to choice of origin) to evaluate/3's from 
(10), followed by a systematic shifting along the polar 
axis to find the positions of highest correlation 
coefficient. 

Crystal structures with non-crystallographic sym- 
metry may be handled by a straightforward extension 
of this procedure. Provided the non-crystallographic 
symmetry relationships have been determined, the A 
matrix can be easily modified to incorporate this 
information. Specifically, if the subscript I designates 

U 1 

A 

0 ¥ 

>> %< 

I 

(a) (b) 

Fig. 4. Superposition down the z axis (0-z-<a)  of the electron density in the lysozyme asymmetric unit, calculated with Fourier 
coefficients (a) (Fobs, amoOel) and (b) (Fobs, acalc), acalc was calculated from the SF12 structure-factor set. 
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coordinates related by the non-crystallographic sym- 
metry, then A may be written: 

A2i- l , j  = ~, aC( hi, xj, t) 
l 

AEi, j = Y. be(hi ,  xj, t). 
l 

(12) 

In this manner, the size of the envelope may be 
effectively increased without increasing the size of 
the eigendensity vector, which should enhance the 
ability of a few eigendensity vectors to represent the 
structure. 

Crowther (1967, 1969) has presented an elegant 
linear formulation of the non-crystallographic sym- 
metry problem that provided a basis set of eigen- 
densities to describe an unknown structure. If the 
Fourier transform of the j th  eigendensity is represen- 
ted by uj(hi) ,  then the observed intensity IF2obs(hi) 
may be written as the symmetric quadratic: 

IF~obs(hi)l = Y~ E t~flZkUj(hi)uk(hi), (13) 
j k 

where the /zj are the weighting coefficients of the 
corresponding uj. A difficulty in the implementation 
of Crowther's formulation was the quadratic depen- 
dence of the observed intensities on the (unknown) 
/zj. If the problem is recast to maximize the sum of 
the product between the observed and calculated 
intensities with respect to the/.% however, then the 
p,j may be obtained directly by the eigenvalue method 
discussed in this paper. 

Direct methods of phase determination involve the 
application of constraints on the electron density 
(such as non-negativity and/or  atomicity in the case 
of small-molecule structures) to provide useful 
relationships between structure factors. A characteris- 
tic feature of macromolecular structures is the rela- 
tively large solvent content, and the existence of an 
envelope that divides the crystal into regions of 
molecule and solvent. In this paper, an envelope- 
based approach has been developed for deriving 
phase information directly from observed diffraction 
data. While the ultimate utility of this method can 

only be established by the successful solution of 
unknown structures, test calculations suggest that 
phases of promising quality may be obtained by this 
procedure. 
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